DGCR8-Mediated Production of Canonical Micrornas Is Critical for Regulatory T Cell Function and Stability
نویسندگان
چکیده
Regulatory T cells (Treg) are integral for immune homeostasis. Here we demonstrate that canonical microRNAs (miRNAs) are required for Treg function because mice with DGCR8-deficient Treg cells spontaneously develop a scurfy-like disease. Using genetic lineage marking we show that absence of miRNAs leads to reduced FoxP3 expression in Treg cells in vivo. In vitro culture of purified DGCR8-deficient Treg leads to a loss of FoxP3 expression. We conclude that canonical miRNAs are essential to maintain stable FoxP3 expression and Treg function. Thus, signals interfering with miRNA homeostasis might contribute to autoimmune diseases.
منابع مشابه
MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملProcessing of microRNA primary transcripts requires heme in mammalian cells.
DiGeorge syndrome critical region gene 8 (DGCR8) is the RNA-binding partner protein of the nuclease Drosha. DGCR8 and Drosha recognize and cleave primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical microRNAs (miRNAs) in animals. We previously reported that human, frog, and starfish DGCR8 bind heme when expressed in Escherichia coli and that Fe(III) heme activates apoDGC...
متن کاملSuper-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis
Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers...
متن کاملBiogenesis of mammalian microRNAs by a non-canonical processing pathway
Canonical microRNA biogenesis requires the Microprocessor components, Drosha and DGCR8, to generate precursor-miRNA, and Dicer to form mature miRNA. The Microprocessor is not required for processing of some miRNAs, including mirtrons, in which spliceosome-excised introns are direct Dicer substrates. In this study, we examine the processing of putative human mirtrons and demonstrate that althoug...
متن کاملDeficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice
DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8(d/d)) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are requ...
متن کامل